

DIFFERENTIAL SCANNING CALORIMETER CODE DSC-H600

- Widely used for researching the phase transition of inorganic materials, the melting and crystallization process of polymers, and the polymorphism phenomenon of drugs
- The closed metal furnace structure significantly enhances the resolution, resolution stability and baseline stability
- Alloy sensors, with better corrosion resistance and oxidation resistance performance
- Users can calibrate the temperature by reference materials
- The software can automatically switch between two gas paths and precisely control the flow rate of the purging gas
- The software can calculate various data, including enthalpy, glass transition temperature, etc.
- Supports USB bidirectional communication with auto-recovery connection capability

STANDARD DELIVERY

Main unit	1 pc
Sotfware	1 pc
Aluminum crucible (DSC-H600-LG)	500 pcs
Tool	1 set

OTIONAL DELIVERY

Aluminum crucible with lid	DSC-H600-CW
Crucible sample presser	DSC-H600-GY
Computer	DSC-H600-COMPUTER

aluminum crucibles (included)

crucible sample presser (optional)

SPECIFICATION

SPECIFICATION	
Analysis range	0~±500mW
Temperature range	RT~600 °C (other temperatures can be customized)
Heating rate	0.1~80°C/min
Temperature resolution	0.01°C
Temperature repeatability	≤0.1°C
Baseline noise	≤0.001mW
Resolution	0.001mW
Precision	±0.001mW
Sensitivity	0.001mW
Temperature control method	heating up, constant temperature, cooling down (fully automatic program control)
Curve scanning	heating scan, cooling scan
Gas control	automatic switching
Gas flow rate	0~200mL/min
Gas pressure	0.2Mpa
Display screen	7-inch LCD touch screen
Data interface	USB
Parameter calibration	with a multi-point calibration function
Work environment	15~35°C, ≤85%RH
Power supply	AC 220V, 50Hz
Dimension (L×W×H)	480×420×260mm
Weight	15kg